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General orientation

Ab initio nuclear calculations have had great success over the past 15 years

Nuclear structure does indeed have quantitative roots in the vacuum NN interaction

Several features of light-nucleus energy spectra are reproduced:
• Overall scale of binding energy
• Orderings of Jπ states (including 10B ground state, sensitive to NNN

force)
• Spin-orbit splittings (also sensitive to NNN)

Quantum Monte Carlo achieved some of these things first

QMC dependence on A is steeper than Moore’s Law, so it may not go beyond
A = 12 without some big change to algorithms

Many things remain to be done at A ≤ 12: reactions, transitions, overlaps, etc.



A sampling of the quantum Monte Carlo results
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Overlaps, tails, widths, and phase shifts

Several goals for the near future are served by a single tool: integral relations
between the short-range wave function and long-range properties

Many narrow unbound states on the previous page were computed as if bound
– how to get widths from those?

The wave functions converge rapidly at short range but poorly at long range
– how to remedy that?

Overlaps are needed for transfer/knockout/breakup reactions
– how to compute them accurately?

Cross sections naı̈vely require laborious computation of solutions at many boundary
conditions
– is there a less labor-intensive approximation?



Asymptotic normalization coefficient (ANC): definition

Many-body wave functions at large cluster separations factorize into clusters
times a known shape:

Φ3He(rpd →∞) =
∑
l=0,2

CljφdφpYlm(r̂pd)W−η,l+1
2
(2krpd)/rpd

At long range, nuclear dynamics just set E (→ η, k) and Clj



Why compute and measure ANCs?

ANCs are useful for estimating low-energy direct-capture cross sections like
7Be + p→ 8B + γ that are hard to measure directly

ANCs are observables in the quantum-mechanical sense (they’re residues of
S-matrix poles), unlike spectroscopic factors

ANCs are computable and must agree between phase-equivalent potentials
(unlike spectroscopic factors)

ANCs are as real as charge or matter radii and are equally valid tests of theory

Relatively few ANCs have been measured −→ an opportunity for pre- rather
than post-diction

ANCs provide a learning problem for integral relations



Integral relation for the ANC

Wave function tails are hard to compute accurately, but we can learn the ANC
without computing the tail (goes back to 1970s)

The Schrödinger equation

(H − E) ΨA = 0

may be separated into parts internal to ΨA−1 and parts involving the last
particle (distance rcc away) to yield

ΨA = − [Trel + VC +B]−1 (Urel − VC) ΨA

which implies

Clj =
2µ

k~2w
A
∫ M−η,l+1

2
(2krcc)

rcc
Ψ†A−1χ

†Y †lm(r̂cc) (Urel − VC) ΨAdR

M−η,l+1
2
(2kr) is the “other” Whittaker function, irregular at r →∞,

and R = (r1, r2, · · · , rA), with rcc = rA − 1
A−1

∑A−1
i=1 ri



The results, 3 ≤ A ≤ 9 one-nucleon removal, just VMC (not GFMC)

RAPID COMMUNICATIONS
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TABLE I. ANCs computed from Eq. (5) for given A-body nuclei, (A − 1)-body residual nuclei, and angular momentum channels lj or
2s+1l. Units are fm−1/2, and f -wave ANCs have been multiplied by 103. Error estimates reflect Monte Carlo statistics only, and columns left
empty are zero by exact symmetries. Asterisks denote first excited states.

A A − 1 s1/2 d3/2 Cd 3/2/Cs 1/2

3H 2H 2.127(8) −0.0979(9) −0.0460(5)
3He 2H 2.144(8) −0.0927(10) −0.0432(5)
4He 3H −6.55(2)
4He 3He 6.42(2)

A A − 1 p1/2 p3/2 f5/2 × 103 f7/2 × 103

7Li 6He 3.68(5)
7Li∗ 6He 3.49(5)
7Li 6Li 1.652(12) 1.890(13) −78(20)
7Li∗ 6Li −0.543(16) −2.54(4)
7Be 6Li −1.87(3) −2.15(3) 63(9)
7Be∗ 6Li 0.559(16) 2.59(5)
8Li 7Li 0.218(6) −0.618(11) 5.2(5) 2.5(15)
8Li∗ 7Li −0.090(3) 0.281(5) −0.6(2)
8B 7Be 0.246(9) −0.691(17) 1.1(2) −1.1(5)
9C 8B −0.309(7) 1.125(12) 1.9(5) −0.5(18)
9Li 8Li 0.308(7) −1.140(13) −4.1(10) 5(3)
9Li 8Li∗ −0.122(3) 0.695(7) −1.1(6)
9Li 8He −5.99(8)
9Be 8Li 5.03(6) 9.50(11) 35(34) 257(112)
9Be 8Li∗ 6.56(5) −6.21(7) 364(40)

A A − 1 2p 4p 2f × 103 4f × 103

7Li 6Li 2.510(18) 0.029(18) −78(20)
7Li∗ 6Li −2.57(5) −0.33(3)
7Be 6Li −2.85(4) −0.04(4) −63(9)
7Be∗ 6Li 2.63(5) 0.34(3)
9Li 8Li∗ −0.599(7) −0.373(7) 1.1(6)
9Be 8Li∗ −0.25(9) −9.03(8) −364(40)

A A − 1 4p 6p 4f × 103 6f × 103

9C 8B 0.868(14) 0.779(12) 0.1(19) −2(1)
9Li 8Li −0.882(15) −0.785(12) 3.3(34) 5.2(19)
9Be 8Li 10.75(12) −0.25(10) 256(117) 42(65)

A A − 1 3p 5p 3f × 103 5f × 103

8Li 7Li −0.283(12) −0.591(12) −0.3(16) −5.8(10)
8Li∗ 7Li 0.220(6) 0.197(5) 0.6(2)
8B 7Be −0.315(19) −0.662(19) −0.6(5) −1.4(4)

with A = 3, 4 have substantially identical ANCs for BH and
Bexpt because the AV18 + UIX interaction was tuned to have
BH $ Bexpt in these systems. Pisa ANCs converted to our
conventions may be found in Ref. [27].)

For A > 4 ANCs, experimental constraints have been
inferred almost entirely from transfer [1–5,7,9,38], knockout
[8], or breakup [6] reactions, and are of generally more recent
vintage than the A ! 4 ANCs. In some cases, components
of different j contribute indistinguishably to differential cross
sections, which then constrain only the sum

∑
j C2

lj . These
cases are indicated in Fig. 3 and shown as the square root of the
sum for comparability of error bars. Our p-shell ANCs are in
broadly good agreement with those inferred from experiment,
particularly for the well-measured A = 8 ground state ANCs

as discussed above. (Our calculations for A = 8 also agree
with prior theoretical estimates of [17,39].) Reference [27]
presented many ANCs computed by applying Eq. (5) with
a simpler potential to harmonic-oscillator wave functions
derived from shell models; about half of our p-shell ANCs
disagree with those calculations by more than 25%.

The most significant differences from previous work are
in the 7Li → n 6Li ANCs. The comparison with experiment
here is difficult because of the wide range of estimates, which
extend from

√∑
C2

lj = 1.26 to 2.82 fm−1/2 just from (d, t)
at varying energy ([7], with full range shown in Fig. 3) and
include other values within that range [38,40]. The effective
ANC of Huang et al. [41], whose capture model successfully
matches 6Li(p, γ )7Be data, is 25% below ours.

041001-4

Nollett & Wiringa, PRC 83, 041001(R) (2011)

The small f -wave amplitudes are accessible with this method – unknown how
reliable (or measurable), but something new



Readable results, where there are “experimental” data

to

2.13

(full range to 2.0)

Small error bars are VMC statistics

Large ones are “experimental”

Sensitivity to wave function construction
seems weak but hard to quantify

A ≤ 4 clearly dominated by systematics,
also old

With a couple of exceptions, these are the
first ab initio ANCs in A > 4

In a capture model, our 8B ANCs give
S17(0) = 20.8 eV · b, same as
recommended value



Widths as squared ANCs of resonant states

Widths are proportional to ANCs of resonant states, Γ ' ~2k
µ |Clj|

2

I’ve chosen low-lying states in A ≤ 9 with width mainly/all in nucleon emission

Red: overlaps inconsistent with
resonance

Asterisk: uncomputed channels

Dynamic range of 0.0005 to
. 1.0 MeV, not otherwise
possible for QMC

Nollett, PRC in press,
arXiv:1206.0046



Overlaps at all radii: not just asymptotics

The integral relations contain more information about the potential than does
the VMC wave function −→ better overlaps



Applications to “recent” experimental widths

+ agrees with experiment
− disagrees with experiment
0 can’t tell because of wave function problems

State Status Expt ref.
7He(3

2
−

) +
7He(1

2
−

) 0
7He(5

2
−

) 0
8B(0+) 0 Mitchell 2010
8B(2+) − Mitchell 2010
9Li(5

2
−

) + Wuosmaa 2005
9Li(3

2
−

) + Wuosmaa 2005
9Li(7

2
−

) + Wuosmaa 2005
9He ? Various

I find good support for Wuosmaa et
al. Jπ assignments in 9Li

9He is a mess:

I only compute 1
2
−

well, and it should
have Γ ∼ 1 to 2 MeV

Very few claimed resonances can
match that



What next?

α (and other cluster) widths & overlaps once the code is more-generally written

Tests against scattering calculations to see whether I can get the AV18+UIX
widths this way

GFMC and IL7 (better match to experimental thresholds)

Similar things are being done as pseudobound approaches to scattering δ(E)

(Horiuchi et al., Kievsky et al., etc.) – some of that can be adapted

Coupled-channel problems will require some way of extracting surface amplitudes
from GFMC, integrals are probably the way to do that

Energy resolutions below the 100 keV range are difficult for GFMC, so the
integral approach will beat phase-shift mapping for really narrow states



BONUS MATERIAL



8Li→ 7Li + n summarizes the whole project

ANC (fm−1) VMC: AV18+UIX binding VMC: Lab binding Experiment
C2
p1/2 0.029(2) 0.048(3) 0.048(6)

C2
p3/2 0.237(9) 0.382(14) 0.384(38)



Testing out the integral relation for Γ

This has been a long time coming, paper in production now

13

TABLE I: The results of integral-relation calculations of widths. Results are shown from calculations in which the channel
energy was assumed equal to its value from GFMC calculations with the AV18+UIX Hamiltonian and in which the channel
energy was taken from experimental results. Where no experimental value is available, the results in the “Experimental energy”
column were computed using the GFMC energy with the AV18+IL7 hamiltonian, and they are indicated by parentheses. The
column “Matches 90◦?” indicates whether the overlap function seems to correspond to that of a resonance state, as discussed
in Sec. IVA. Energies are relative to the decay threshold in the center-of-mass frame, and errors given for calculations include
only Monte Carlo sampling. NEED TO FOOTNOTE SOURCES.

State Daughter Experiment From Exp energy From AV18+UIX energy Matches ζ
E (MeV) Γ (MeV) ΓV MC (MeV) EUIX (MeV) ΓV MC (MeV) 90◦?

5He(3/2−) 4He(0+) 0.798 0.648 [50] 0.307(5) 1.39 0.684(11) no 0.460
5He(1/2−) 4He(0+) 2.07 5.57 [50] 0.582(13) 2.4 0.711(15) no 0.429
7He(3/2−) 6He(0+) 0.445 0.15(2) 0.114(4) 2.3 1.184(9) yes 0.092
7He(1/2−) 6He(0+) 3.045 – 1.98(9) 2.91 1.87(8) no 0.092
7He(1/2−) 6He(2+) 1.25 – 0.42(3) 1.11 0.36(2) yes 0.067
7He(1/2−) sum 3.045 2.0(1.0) 2.40(12)a 2.91 2.22(11)a
7He(5/2−) 6He(2+) 1.57 1.99(17) 1.31(10)a 1.87 1.66(13)a no 0.165
7Li(5/2−

2 ) 6Li(1+) 0.204 0.0646 0.0483(17)a 1.55 0.92(3)a yes 0.055
7Be(5/2−

2 ) 6Li(1+) 1.60 0.19(5) 0.426(14)a 2.5 1.00(3)a yes 0.055
8B(1+) 7Be(3/2−) 0.632 – 0.0383(14) 1.47 0.346(12) yes 0.001
8B(1+) 7Be(1/2−) 0.203 – 0.00105(6) 1.38 0.51(3) yes 0.003
8B(1+) sum 0.0357(6) 0.0394(14) 0.86(3) yes
8Li(3+) 7Li(3/2−) 0.223 0.032(3) 0.0344(18) 2.5 1.12(6) yes 0.007
8B(3+) 7Be(3/2−) 2.18 0.39(4) 0.38(2) 2.4 0.46(2) yes 0.007
8B(0+) 7Be(3/2−) [2.56] – [0.65(4)] 2.39 0.57(3) no 0.005
8B(0+) 7Be(1/2−) [2.24] – [1.23(6)] 2.30 1.29(7) no 0.004
8Li(0+) 7Li(3/2−) [0.97] – [0.37(2)] 0.94 0.389(15) no 0.005
8Li(0+) 7Li(1/2−) [0.62] – [0.516(18)] 0.62 0.72(2) no 0.004
8Be(1+) T = 1b 7Li(3/2−) 0.385 – 0.0089(3) 1.2 0.152(3) yes 0.003
8Be(1+) T = 0b 7Li(3/2−) 0.895 – 0.150(4) 0.5 0.0354(10) yes 0.003
8Be(1+) sumb 7Li(3/2−) 0.149(6) 0.159(4) 0.187(3) yes
8Be(3+) T = 1b 7Li(3/2−) 1.81 – 0.166(8) 3.68 0.60(3) yes 0.007
8Be(3+) T = 0b 7Li(3/2−) 1.98 – 0.314(14) 2.33 0.43(2) yes 0.003
8Be(3+) T = 1b 7Be(3/2−) 0.170 – 0.0115(6) 2.09 0.44(2) yes 0.007
8Be(3+) T = 0b 7Be(3/2−) 0.335 – 0.050(2) 0.74 0.161(8) yes 0.004
8Be(3+) sumb sum 0.50(3) 0.542(16) 1.63(4) yes
9Li(5/2−) 8Li(2+) 0.232 0.10(3) 0.145(4) 0.97 1.17(3) yes 0.003
9Li(7/2−) 8Li(2+) 2.366 – 0.0012(7) 3.64 0.0031(16) no 0.045
9Li(7/2−) 8Li(3+) 0.111 – 0.0427(8) 0.23 0.126(3) yes 0.006
9Li(7/2−) sum 0.04(2) 0.0439(11) 0.129(3)
9Li(3/2−

2 ) 8Li(2+) 1.316 – 0.522(13) 1.51 0.631(17) no 0.014
9Li(3/2−

2 ) 8Li(1+) 0.340 – 0.172(4) 0.50 0.302(8) yes 0.006
9Li(3/2−

2 ) sum 0.6(1) 0.694(18) 0.932(19)
9C(1/2−) 8B(2+) 0.918 0.10(2) 0.102(3) 1.54 0.428(11) yes 0.006
9Be(1/2−) 8Be(0+) 1.110 0.86(9) 0.80(2) 4.37 4.89(12) yes 0.0005
9B(3/2−) 8Be(0+) 0.185 0.00054(21) 0.00058(2) 1.9 0.92(2) yes 0.0003
9Be(7/2−) 8Be(0+) 4.715 – 0.0082(4) – – yes 0.005
9Be(7/2−) 8Be(2+) 1.685 – 0.40(2) – – yes 0.003
9Be(7/2−) sum 1.2(2) 0.41(2)a – – yes
9B(7/2−) 8Be(2+) 4.13 2.0(2) 0.82(4)a – – yes 0.003
8B(2+

2 ) 7Be(3/2−) 2.41 0.12(4) 0.425(15) – – yes 0.004
8B(2+

2 ) 7Be(1/2−) 1.98 0.24(11) 0.039(2) – – yes 0.010
8Li(2+

2 ) 7Li(3/2−) [2.18] – [1.00(4)] – – yes 0.004
8Li(2+

2 ) 7Li(1/2−) [2.06] – [0.105(6)] – – yes 0.010
aOpen channels other than one-nucleon emission were neglected in the calculation (alpha or non-sequential).
bSee the text for discussion of the effects of isospin mixing in the observed 1+ and 3+ states of 8Be.



Widths and state identification: 7He & 9Li

New theoretical information should be useful for Jπ identification of states

The 7He ground state (3
2
−

) is not too bad: Γ = 114(4) keV vs. Γ = 125+40
−15

measured

Neither 7He(1
2
−

) nor 7He(5
2
−

) overlaps look like 90◦ phase shift (both are

broad); 1
2
−

width isn’t bad

Computed 9Li widths support Jπ assignments of Wuosmaa et al. 2005:
3/2−, 1/2−, 5/2−, 3/2−, 7/2−



Widths and state identification: 9He

Broad 1
2
−

matches width claimed at
Dubna (but not elsewhere)

I find < 5 keV width for 3
2
−

, but direct
overlap is inconsistent with 90◦

Did not consider unbound decay
products (so no decays through
8He(2+))

There should be even-parity intruders, but those VMC aren’t well developed,
and 8He(2+) should be important



Widths and state identification: 8B

Mitchell et al. 2010 claim new broad 0+ & 2+ states in 8B (at low significance)

0+ width calculations look unreliable –
90◦ test failed

I can assume a range of E in the width
and see what Γ corresponds

Widths to 7Be & 7Be∗ computed
separately

VMC 2+ states are compatible with 90◦, but I don’t reproduce Mitchell widths
of 8B(2+

2 ) state



Γ 6= SljΓs.p.

blue: consistent with 90◦ via P-S red: not consistent

For narrow states without open α channels, the integral relation beats width
estimates based on spectroscopic factors

Mean of vertical axis, states where all channels counted & VMC wave function
“looks resonant:” 1.06± 0.07 integral, 0.75± 0.15 Woods-Saxon
(χ2
ν = 1.5 vs. 34)



From the beginning: Why/what is ab initio nuclear theory?

We seek the most fundamental description of the nucleus possible

QCD is at the moment too fundamental to be useful, so for now, ab initio theory
means describing nuclei in terms of the NN interaction in vacuum

We want to understand how nuclear properties arise from properties of the
interactions between nucleons

We want to constrain interactions for use e.g. in nuclear matter & neutron-star
matter problems

We want to be able to predict nuclear cross sections for astrophysics



In the last 20 years, some important pieces of the ab initio puzzle have fallen
into place

Realistic potentials
Several representations of the NN interaction were fitted to Nijmegen database
of 4300 NN scattering data with χ2

ν ' 1.0 (CD Bonn, Nijmegen I & II,
Argonne v18, N3LO)

Efficacious many-body methods
Correlated hyperspherical harmonic, Fadeev methods (forA ≤ 4); quantum
Monte Carlo, no-core shell model, coupled-cluster, molecular dynamics
methods (for A > 4)

Expanding computer power
Moore’s law provided the opportunity, but
does not solve all problems



The Hamiltonian

We work with the Argonne v18 nucleon-nucleon potential
(18 operator terms, full EM, charge symmetry
breaking, χ2

ν = 1.09)

Three-nucleon interaction: Urbana IX fitted to 3H binding, saturation density
Illinois-x fitted to 23 bound & narrow levels

!

"

""

" !

!
!

"

"

"

"
" "

This interaction is fed to variational Monte Carlo (VMC) and then Green’s function
Monte Carlo (GFMC) computational methods



What we actually do, part I: Interactions

We work with the Argonne v18 nucleon-nucleon potential

It’s one of the realistic potentials mentioned before

• fits all pp & np data to 350 MeV in Nijmegen 1993 phase shift analysis
with χ2

ν = 1.09, also deuteron properties

• 18 operator terms (L · S, σ · σ, tensor, scalar...), ∼40 parameters fitted
once in 1995

• local interaction, strong repulsive core, strong tensor interaction and π
exchange at longer range

• full complication of EM interaction (mag. moment, vacuum polarization...),
charge symmetry breaking, charge dependence



What we actually do, part I: Interactions

In A ≥ 3 systems, there is an important 3-nucleon interaction that provides a
large fraction of the binding energy & spin-orbit splitting

Physically, this arises from lack of explicit π and ∆ d.o.f. in the wave function
and is tangled with off-shell behavior of NN interaction

We use (mostly) the Illinois 7 (IL7) NNN interaction:
• 4 terms, spatial/spin/isospin dependence fixed by 2- & 3-pion exchange
• only 4 adjusted parameters (strengths of those terms)
• fixed by fit to 23 bound and narrow levels at A ≤ 8

• RMS deviation of 700 keV from 60 experimental states in A ≤ 10

!

"

""

" !

!
!

"

"

"

"
" "



Quantum Monte Carlo, part II: Methods

We want to find nuclear energies and wave functions from the interaction

ĤΨ(r1, r2, ..., rA) = EΨ(r1, r2, ..., rA)

With one equation for each spin/isospin channel, this is some 270,000 coupled
channels in 33 variables for the case of 12C

I use two methods as successive approximations:

• Variational Monte Carlo (VMC)

• Green’s function Monte Carlo (GFMC)

Instead of a spatial basis, QMC methods operate on samples of the wave
function at discrete points in the 3A-dimensional configuration space



What we actually do, part II: Methods

We want to find nuclear energies and wave functions from the interaction

ĤΨ(r1, r2, ..., rA) = EΨ(r1, r2, ..., rA)

With one equation for each spin/isospin channel, this is some 270,000 coupled
channels in 33 variables for the case of 12C

I use two methods as successive approximations:

• Variational Monte Carlo (VMC)

• Green’s function Monte Carlo (GFMC)

Instead of a spatial basis, QMC methods operate on samples of the wave
function at discrete points in the 3A-dimensional configuration space



What we actually do, part II: Methods

Variational Monte Carlo (VMC) is based on a sophisticated guess wave function
reflecting pairwise interactions of nucleons:

ΨT = [3-body operator functions]× [2-body operator functions]

× [scalar functions]× [shell-model-like orbital/spin/isospin structure]

We evaluate ET =
〈ΨT |H|ΨT 〉
〈ΨT |ΨT 〉

, and set adjustable parameters by hand to

minimize ET

Green’s function Monte Carlo (GFMC) projects the
true ground state out of the VMC wave function

Ψ(τ) = exp
[
−
(
H − Ẽ

)
τ
]

ΨT

As τ →∞, Ψ(τ) approaches the ground state



Quantum Monte Carlo results

The variational Monte Carlo (VMC) method give a first approximation, then
Green’s function Monte Carlo (GFMC) projects out the solution

Energies in 60 states up to A = 10 are reproduced to better than 700 keV
RMS (with four fitted parameters of the three-nucleon force)

We have also successfully computed:

• RMS radii and quadrupole moments are computed, mostly with success

• β and γ transition rates

• α+ n scattering phase shifts

• pickup and stripping cross sections (via form factors & spectroscopic
factors)

• (e, e′p) cross sections



ANC: What is it good for?

Clearest case is low-energy direct capture, X + Y −→ Z + γ

At E well below the Coulomb barrier, the initial-state wave function has very
small amplitude in the nuclear interior (has to tunnel)

Matrix element then comes (& 95%) from the asymptotic region so σ ∝ C2
lj

Illustrative cases are 7Be(p, γ)8B & 3He(α, γ)7Be in the sun (20 keV)

Approaches through the ANC have now been applied to 7Be(p, γ)8B, d(α, γ)6Li,
3He(α, γ)7Be, 8Be(p, γ)9C, 8Li(n, γ)9Li, 14N(p, γ)15O, 12N(p, γ)13O,
17F(p, γ)18Ne, etc.



ANCs in transfer reactions

Some ANCs can in principle be extracted from analytic continuation of scattering
data (1970s)

Most ANC determinations for captures came from transfer, knockout, or breakup
reactions

These are really special cases of spectroscopic-factor experiments

Such experiments are meant to probe the cluster overlap function

R
JA−1JA
lj (r) ≡

∫
A
[
Ψ
JA−1
A−1 [χYl(r̂)] j

]
†
JA

δ(r − rcc)
r2

ΨJA
A dR

and particularly

Slj ≡
∫
R2
lj(r)r

2dr

Rlj and Slj are easily defined and computed in a shell model and used in
DWBA or other reaction theory



ANCs: 3He → dp

s-wave ANC integrand & integral d-wave ANC integrand & integral

Points are Monte-Carlo sampled integrand; solid curves are cumulative integrals

For 3He→ dp, we haveCdps = 2.131(8) fm−1/2 ,Cdpd = −0.0885(7) fm−1/2

C
dp
d converges just where sampling gets sparse in the explicit overlap



Application to the VMC wave functions

I’ve implemented the integral approach to the ANC within the VMC code, building
on Wiringa’s spectroscopic factor routines

I’ve applied the integral method to Wiringa’s latest Argonne v18 + Urbana IX
(AV18+UIX) wave functions for A ≤ 9 in almost every combination of
particle stable A- and (A− 1)-body states

I have to choose a separation energy, either experimental or AV18+UIX, in
evaluating each integral

It quickly became apparent that results match experiment only when the experimental
separation energy is used

(Retrospective no-brainer: otherwise we’re comparing against different functions)



Why is any of this useful?

Clj =
2µ

k~2w
A
∫ M−η l+1

2
(2krcc)

rcc
Ψ†A−1χ

†Y †lm(r̂cc) (Urel − VC) ΨAdR

The power of this approach lies in the factor (Urel − VC)

It contains the potential, but only terms linking the core to the last particle:

Urel =
∑
i<A

viA +
∑

i<j<A

VijA

At large separation of the last nucleon, Urel → VC , so Urel − VC → 0

Integrand goes to zero at rcc ∼ 7 fm with AV18+UIX

QMC methods are good at integration over the wave function interior, bad at
the exterior

Closely related to Lippman-Schwinger equation (and to Pinkston-Satchler or
Kawai-Yazaki overlaps); used by Mukhamedzhanov & Timofeyuk since∼ 1990



Comparison with what came before

Timofeyuk has pursued a “hybrid”
approach to the ANC integral for a
long time

Wave functions come from p-shell model,
integral from M3YE potential

Uncertainties have been hard to estimate

Colors denote shell model used in
Timofeyuk 2010

Millener Boyarkina CK816

Attempts to derive ratios of
isobaric-analogue ANCs from those
calculations don’t seem to hold up



Heights and widths

“The other day I was walking my dog around my
building, on the ledge. Some people are afraid of
heights. I’m afraid of widths.”

– Steven Wright

We have ab initio energies for many narrow unbound levels (computed as
bound)

Figuring out how to get widths has been difficult

There is an obvious but laborious way – explicit calculation of phase shifts at
many energies, extraction of pole (has been done for 5He states)

Other paths have not panned out (e.g. “decay” rate in GFMC)



Widths as ANCs

The relation

ψ(r →∞) = Cljφ1φ2Gl(η, kr)/r

for resonant states is mathematically almost the same as

ψ(r →∞) = Cljφ1φ2W−η,l+1
2
(2kr)/r

for bound states

The integral method also applies to resonant states, except that now Fl appears
in the integral instead of M−η,l+1

2

This is used as a mathematical tool to get the asymptotics right in simpler α and
p decay models (e.g. Åberg et al. (1997) proton emitters, Russian literature
on α decay, etc.)



Widths as ANCs

Hand-waving description of widths as ANCs:

An unbound wave function at large radius looks like

ψ(r →∞) ∝ [Fl(kr) cos δ +Gl(kr) sin δ] /r

so that at resonance (δ = 90◦; as our pseudobound states should have)

ψ(r →∞) = Cljφ1φ2Gl(kr)/r

The flux per unit time through the surface is |Clj|2v = ~k
µ |Clj|

2, so

Γ '
~2k

µ
|Clj|2

This is be shown to be nearly exact in papers by Humblet (not by this reasoning)

Widths can be computed (to some approximation) just like bound-state ANCs



Overlaps at all radii

The ANC/width integrals are special cases of the overlaps of Pinkston & Satchler
(or Kawai & Yazaki):

Rlj(r) ∝
[
cos δlj +

∫ ∞
r

Gl(krcc)

rcc
Ψ†A−1χ

†(Urel − VC)ΨAdR

]
Fl(kr)/r

+

[∫ r
0

Fl(krcc)

rcc
Ψ†A−1χ

†(Urel − VC)ΨAdR

]
Gl(kr)/r

90◦ phase shift means no Fl component at r →∞

If this Rlj with cos δlj = 0 is a poor match to the directly-computed overlap at
small r, then δ 6= 90◦ for that channel −→ my assumptions are invalid

Cases that fail this test generally have small spectroscopic factors



Overlaps at all radii

The ANC/width integrals are special cases of the overlaps of Pinkston & Satchler
(or Kawai & Yazaki)

By considering integral relations away from r →∞ limit, we get overlap functions
at all r

These can be used in reaction models

They also provide a test of whether unbound VMC wave functions really look
like resonant states



Overlaps at all radii
Good Good Bad

Points: Direct overlap Curves: From integral relation







Asymptotic Normalization Coefficient (ANC): Definition

Solutions ψ = u(r)/r to the one-body Schrödinger equation have known forms
at large r:

−
~2

2µ

d2

dr2
u(r) +

l(l + 1)~2

2µr2
u(r) + U(r)u(r) +

Z1Z2e
2

r
u(r) = Eu(r)

−
~2

2µ

d2

dr2
u(r) +

l(l + 1)~2

2µr2
u(r) +

Z1Z2e
2

r
u(r) = Eu(r), r →∞

E < 0 solutions to the second equation are the Whittaker functionsW−η,l+1/2(2kr)

[For neutrons, Z1Z2 = 0 and W0,l+1/2(2kr) =
√

2kr/πKl+1/2(kr),
modified spherical Bessel function of the 3rd kind]

Solutions of the first equation must then satisfy the property that

ψ(r →∞) = CW−η,l+1/2(2kr)/r,

where k =
√

2µE/~ and the ANC C depend on the short-range potential
U(r)



ANC: example

So for example in a cluster model of 7Li as an α-triton bound state, we have:

The short-range structure depends on details of the potential, but at long range
the details reduce to C and E



7Be(p, γ)8B S-factor at low energy:

The upward turn at low E can be understood entirely from external capture



External direct capture: d(α, γ)6Li

d(α, γ)6Li matrix element density at 50 keV:
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ANC vs. spectroscopic factor

Some recent papers:

Mukhamedzhanov & Kadyrov 2010 show that Slj is changed by unitary
transformations of the potential, while Clj is not

Jennings 2011 (“The Non-observability of Spectroscopic Factors”) demonstrates
ambiguities that in principle let you dial Slj to any desired number – but Clj
remains fixed

Bogner et al. 2007 shows how 2H d-state
probability can be zeroed out by cutting
out high- momentum components while
preserving low-E phase shifts (and thus
ANCs)
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ANC vs. spectroscopic factor

The spectroscopic factor still has its place in an analysis where particularly Rlj
is consistent between reaction model and structure model

Clj is more nearly an observable in the quantum mechanical sense (doesn’t
depend on representation, related to scattering amplitude)

Clj is more directly applicable to capture processes

Clj is easier to extract from a single analysis and compare with many models

Clj is generally tougher to get at, e.g. Jennings:
“Unfortunately, processes that are not strongly peaked are not uniquely
determined by the asymptotic properties. Thus the bulk quantities we
frequently want are not observables while the asymptotic properties are
observables but do not contain the information necessary to fully specify
the reaction of interest.”



The ANC as observable (1980s)

In fact, there’s a history going back to the 1970s

The triton d/s ANC ratio ηt emerged as an interesting quantity in Faddeev
calculations

George & Knutson, PRC 48, 688 (1993)

Most precise approach ended up being tensor analyzing powers in sub-Coulomb
transfers, e.g. 208Pb(~d, t) interference modeled with DWBA



The ANC as observable (1990s)

The recent literature concentrates on transfer and knockout reactions, e.g. 8Li
ANCs from 13C(7Li, 8Li)12C
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Dispersion theory and related approaches to the ANC (1970s)

A bound state produces a pole in scattering amplitude at E < 0

The ANC is proportional to the residue of that pole, the “vertex constant” or
virtual width

Many authors extracted vertex constants from data, sometimes as pure extrapolation
and sometimes using dispersion relations to subtract non-pole background

None of the numbers are quite experimental (few involved dedicated experiments)

Well-isolated poles not too far from threshold are necessary, and analytic continuation
brings ambiguities

Need for isolated poles rules out many
A > 4 cases because excited states
& exchange diagrams bring poles
and branch cuts

M.P. Locher and T. Mizutani, The use ofanalyticity in nuclear physics 53

are normalized to experiment (subtraction constant), anomalous cuts or nuclear form factors
appear nowhere explicitly in energy extrapolations at fixed angle. We conclude this section by
remarking that the situation for the deuteron with respect to t-channel and u-channel anomalous
cuts is not special. With the appropriate changes in masses and binding energies our results can
be carried over to other light nuclei and remain qualitatively unchanged.

2.2.2. Further multinucleon singularities
We have discussed briefly all the relevant singularities which determine non relativistic nd

scattering. However, our model reaction is somewhat special as the number of nucleons in the
exchange or u-channel is limited to one. For the elastic scattering of a nucleon on a target with
atomic number A, the exchange of (A — 1) baryons becomes possible, fig. 10. The (A — 1) system
may be bound leading to an exchange pole, or unbound leading to an exchange cut. The position
of the exchange pole is given by eq. (20) with the replacements m —~ mN, M —~ mA, mp m,4_,
and c = ~ + mAl — m,~.Similarly the branch point for the continuum exchange obtains from
the same formula withmAl being the mass of the unbound system at zero kinetic energy. Whereas
the residue of the bound (A — 1) system is often the quantity of interest, the unbound exchange
forms an unwanted background. Contrary to the u-channel triangle arising from the exchange
of an extra pion, the unbound multinucleon exchange is close (as illustrated in fig. ii for nt and
n
4He scattering). Furthermore it is generally strong, as is known from the accumulated evidence.
The presence of thesecuts forms asevere limitation for the extraction of individual nuclear coupling
constants both for angular-variable and for energy-variable extrapolations.

j3.13~4.2f2O

Fig. 10. General diagram for the exchange of A — 1 nucleons Fig. 11. Explicit examples of exchange, or u-channel singulari-
in the exchange or u-channel, The (A — 1) system may be bound ties for elastic fit and n—4He scattering. The numbers in the
leading to an exchange pole or unbound, leading to an exchange graphs are the cm energies (MeY) of the corresponding poles
cut in the NA elastic scattering amplitude, and branch points for the forward amplitude. Similarly, poles

and cuts are induced in the scattering angle. Their location in the
cos 0-plane depei~dson the energy.

Of course in a general nuclear reaction direct channel bound states and resonances may occur
below threshold as well, see fig. 12. The triton was an example for the nd case. In the case of

Fig. 12. General graph describing direct channel intermediate states for elastic nucleon-nucleus scattering. Particle stable states of
the (A + 1) system below the elastic scattering threshold lead to poles of the amplitude. Above threshold we have the unitarity cut
[including resonances in the (A + 1) system].
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Relation between ANCs and observables

Clearest case is low-energy direct capture, X + Y −→ Z + γ

At E well below the Coulomb barrier, the initial-state wave function has very
small amplitude in the nuclear interior (has to tunnel), large r dominates
matrix element, σ ∝ C2

lj

Bound states produce negative-energy poles in the scattering amplitude
−→ ANCs ∝ residues and can sometimes be extracted from analytically-
continued scattering data (1970s)

Most ANC determinations (usually motivated by astrophysical capture) come
from transfer, knockout, or breakup reactions

These are special cases of “spectroscopic factor” experiments, requiring
demonstrated independence from small-r contributions



ANCs in transfer reactions

ANC or spectroscopic factor experiments are meant to probe the cluster overlap
function

R
JA−1JA
lj (r) ≡

∫
A
[
Ψ
JA−1
A−1 [χYl(r̂)] j

]
†
JA

δ(r − rcc)
r2

ΨJA
A dR

and particularly the spectroscopic factor

Slj ≡
∫
R2
lj(r)r

2dr

(though this is a questionable meeting point for theory and experiment;
see recent papers by Mukhamedzhanov, Jennings, etc.)

Since Rlj(r → ∞) = CljW−η,l+1
2
(2kr)/r, the ANC Clj can in principle be

isolated in data restricted to large impact parameter

Some of the usual limitations (e.g. optical potentials) apply just as well to Clj
as to Slj

Consistency of Rlj between reaction & structure theory is easier for Clj than
for Slj, provided that you can prove peripherality



Why quantum Monte Carlo ANCs require effort

GFMC requires all the work of variational Monte Carlo plus more, so for now I
work with VMC wave functions:

ΨT = [3-body operator functions]× [2-body operator functions]

× [scalar functions]× [shell-model-like orbital/spin/isospin structure]

Each piece contains variational parameters, found by minimizing energy as
computed by Monte Carlo integration

The VMC ansatz is very good and allows rather accurate calculations of energies
and other observables (GFMC polishes VMC solutions down to the correct
solution)



Barriers to getting ANCs from quantum Monte Carlo calculations

The VMC wave functions account very well for short-range correlations but
generally get the long-range asymptotics wrong

Correcting the long-range problems in a given clusterization channel without
causing other problems is difficult (other channels get wrecked...)

Clj = rRlj(r)/W−η,l+1
2
(2kr) doesn’t work because long-range shapes are

generally wrong

Points are Rlj from VMC

Overlap is a Monte Carlo integration

Curve is W−η,l+1
2
(2kr)/r

Where do I match them?

Basis methods have the same problem



Barriers to getting ANCs from quantum Monte Carlo calculations

Even if I have the correct solution for the potential, the potential may not match
experimental separation energies

That again gives the wrong shape (not so bad for Illinois forces)

OK for comparison to other calculations; not good for predictions

In QMC methods, theRlj overlap integral is evaluated by Monte Carlo integration
over particle coordinates

Sampling based on simplified wave functions typically falls apart just where Rlj
becomes asymptotic

Other sampling schemes are even worse



Integral relation for the ANC

There is a better way than explicit overlaps, ideally suited to QMC methods

Consider the A-body wave function ΨA and its overlap with ΨA−1 plus a final
proton (separation energy B)

Write the Schrödinger equation as

(H − E) ΨA = 0

and expand H and E into parts internal to ΨA−1 and parts involving the
last particle

(Hint + Trel + Urel + VC − VC − Eint +B) ΨA = 0

Then

ΨA = − [Trel + VC +B]−1 (Urel − VC) ΨA

− [Trel + VC +B]−1 (Hint − Eint) ΨA

The second line is zero since (Hint − Eint)ΨA−1 = 0



Integral relation for the ANC

Rewriting the Green’s function [Trel + VC +B]−1 in terms of special functions
turns

ΨA = − [Trel + VC +B]−1 (Urel − VC) ΨA

into

Ψ†A−1χ
†Y †lmΨA =

2µ

k~2w
A
∫ M−η,l+1

2
(2kr<)W−η,l+1

2
(2kr>)

r< r>

×Ψ†A−1χ
†Y †lm(r̂cc) (Urel − VC) ΨAdR

so at large radius

Clj =
2µ

k~2w
A
∫ M−η,l+1

2
(2krcc)

rcc
Ψ†A−1χ

†Y †lm(r̂cc) (Urel − VC) ΨAdR

M−η,l+1
2
(2kr) is the “other” Whittaker function, irregular at r →∞



The laborious way (one open channel)

Set up as a particle in a box problem (i.e. 5He with box defined at 9 fm αn

separation)

Specify a boundary condition γ = ψ′/ψ at
the edge of the box

Compute energy of lowest state in the box

Match ψ ∝ Fl cos δ +Gl sin δ across
boundary

Get phase shift δ

Repeat for many γ to get δi(Ei)
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Fit δ(E) to Padé form of S-matrix; width is imaginary part of pole energy



Estimating the width from the VMC spectroscopic factor

The θ2 = Slj estimate gets us within a factor of 3 of experiment in low-lying
A ≤ 9 states

There is some ambiguity in the limit ( 3~2

2µr2 vs. ~2

µr2 vs. (2l−1)~2

(2l+1)µr2 vs. Woods-
Saxon single-particle width, r must be chosen)

We could pick a definition that centers the trend and live with the scatter



The good, the bad, the ugly

Lots of widths come out close to experiment

Widths not close to experiment generally have some unaccounted-for width
(e.g. α or 3-body channel) or isospin mixing (8Be 3+ and 1+ states), or
are broad

Wiringa’s pseudobound 5He states yield wildly unreasonable widths, probably
because they’re very broad



8Be 3+ states

The first two 3+ states are isospin-mixed (T = 0,1)

The lower (19.07 MeV) is predominantly T = 1, upper (19.235 MeV) predominantly
T = 0

Computing them unmixed, I found 19.07 wider than 19.235, opposite from
experiment

My first thought was that the isospin assigment might be backward

If I consider mixing, I can fit a mixing parameter to one observed width and
predict the other width

Going either direction, I get a fair match for the predicted width, have to inflate
errors a bit for true consistency

Mixing parameter comes out small relative to Barker 1978 (45 keV vs. 60 keV)
and to GFMC (90 keV); direction is right but hard to judge agreement



Pinkston-Satchler as a test of the 90◦ assumption

The integral relations I’ve been using are special cases of the overlaps of
Pinkston & Satchler (or Kawai & Yazaki):

Rlj(r) ∝
[
cos δlj +

∫ ∞
r

Gl(kr
′)φ†1φ

†
2(V − VC)ΨdR

]
Fl(kr)/r

+
[∫ r

0
Fl(kr

′)φ†1φ
†
2(V − VC)ΨdR

]
Gl(kr)/r

90◦ phase shift means no Fl component at r →∞

If this Rlj with cos δlj = 0 is a poor match to the directly-computed overlap at
small r, then δ 6= 90◦ for that channel −→ my assumptions are invalid

Cases that fail this test generally have small spectroscopic factors



Pinkston-Satchler as a test of the 90◦ assumption

Good Bad

p3/2 p1/2 f5/2

Fitting A to match VMC overlap is a bad idea: difference can be a shortcoming
of VMC



Overlaps at all radii

Close-up of consistent overlaps

Integral and direct overlaps
agree at r < 4 fm

At large r, integral method
obeys resonance
asymptotics (by definition)



7He and 9He; 8Li & 8B 0+ states

There was a hope that we could say something useful about widths & identification
of states in 7He and 9He

7He(1
2
−

) and 7He(5
2
−

) both fail 90◦ consistency test and are rather broad

In 9He, broad 1
2
−

matches width claimed at Dubna (but not elsewhere)

Other 9He states (1
2

+
, 3

2
−
, 3

2
+
, 5

2
+

) don’t seem to have anything to do with 8He

g.s. (not 90◦, small spectroscopic factors)

0+ states in 8Li and 8B come out broad and look unreliable – 90◦ consistency
test fails, mismatch between integral & direct overlaps



Uses of overlaps

The overlap functions can help to make reaction theory consistent with structure
theory (breakup, (d, p), (3He, d)...)

Several papers now use VMC overlaps (computed directly, not Pinkston-Satchler)
as inputs via fitted Woods-Saxon wells:

(T + VWS)Rlj = ERlj

with Rlj from VMC

• Wuosmaa et al. PRC 72, 061301(R) (2005); PRL 94, 082502 (2005);
PRC 78, 041302(R) (2008)
• Kanungo et al., PLB 660, 26 (2008)
• Grinyer et al. PRL 106, 162502 (2011)

With overlaps as input & no further fudging, experiment & VMC results agree
(same spectroscopic factor – even for 7Li, pace ubiquitous graphs)



Some examples

DWBA with 〈A−1|A〉 vertices from VMC
overlaps

There’s still an optical potential, e.g. for
8Li+d
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Integral method vs. factorized widths from spectroscopic factors

I could have always made rough estimates of widths using a factorization SljΓs.p.,
with Slj from QMC

Wigner (causality) limit is easy to use for Γs.p. but not much good

Shell-model studies often use “single-particle” widths computed from Woods-
Saxon well

“Standard” geometric parameters are used & depth is set to match resonance
energy, obtaining ΓWS

This width is multiplied by the spectroscopic factor: SljΓWS

Geometric parameters should then be varied within “reasonable” bounds to
check sensitivity



Is the width integral better than the Woods-Saxon width times Slj?

blue: consistent with 90◦ via P-S red: not consistent

For narrow states without open α channels, it’s good and apparently an improvement

Mean of vertical axis, states where all channels counted & VMC wave function
“looks resonant:” 1.06± 0.07 integral, 0.75± 0.15 Woods-Saxon



7He and 9He; 8Li & 8B 0+ states

There was a hope that we could say something useful about widths & identification
of states in 7He and 9He

The 7He ground state comes out too narrow: Γ = 87(5) keV vs. Γ = 125+40
−15

7He(1
2
−

) and 7He(5
2
−

) both fail 90◦ test and are rather broad; 1
2
−

width isn’t
bad

In 9He, broad 1
2
−

matches width claimed at Dubna (but not elsewhere)

Other 9He states (1
2

+
, 3

2
−
, 3

2
+
, 5

2
+

) don’t seem to have anything to do with 8He

g.s. (not 90◦, small spectroscopic factors)

Stopped there to avoid unbound decay products (so no decays through 8He(2+))

Calculations of broad unobserved(?) 0+ states in 8Li and 8B look unreliable
– 90◦ test failed, looks like 5He



Nuclear widths, real?

Comparison with experiment still needs some work

What I extract should (I think) be identified with the “formal width” Γ(ER)

But since what is observed generally looks like

dσ

dΩ
(E) ∝

Γ2(E)[
E − Eλ −

∑
c γ

2
c Sc(E)

]2
+ 1

4Γ2(E)
,

an experimental FWHM looks something like

Γobs =
Γ(ER)

1 +
∑
c γ

2
c S
′
c(ER)

Digging back into the TUNL and Ajzenberg-Selove compilations has been sobering

It’s sometimes hard to tell which flavor a quoted Γ has

Sometimes tabulated Γ is average of Γ & Γobs from different experiments

Original references don’t always inspire confidence


